Phytochemistry, 1975, Vol. 14. pp. 1654-1656. Pergamon Press. Printed in England.

TWO NEW FLAVONE GLYCOSIDES FROM CATALPA OVATA

TAKUO OKUDA, TAKASHI YOSHIDA and IKUYO ONO

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama. Japan

(Received 27 November 1974)

Key Word Index—Catalpa ovata; Bignoniaceae; flavone glycosides; 5,6-dihydroxy-7,4'-dimethoxyflavone-6-O-sophoroside; 5,6-dihydroxy-7,4'-dimethoxyflavone-6-O-glucoside.

Plant. Catalpa ovata G. Don (Bignoniaceae). Collected in October at Kyoto University campus, Kyoto, Japan. Uses. Official diuretic in Japan. Previous work. On fruits [1], woods [2,3], leaves [4,5] and barks [5]. Present work. Two new flavone glycosides, 1, mp 240° (dec.) and 2, mp 217-219°, were isolated by polyamide column chromatography of the water-soluble fraction of the seeds extract. Acid hydrolysis of 1 and 2 yielded glucose and aglycone 3 which was identified with a flavonoid previously obtained from the seeds [1]. This flavonoid has been characterized 5.6-dihvdroxy-7.4'-dimethoxyflayone which had been synthesized [6] and isolated only from Nepeta hindustana [7] and Galeopsis ladanum [8], although mp in ref. [8] (310–313°) differs greatly from 3. 3 Formed a diacetate, $C_{21}H_{18}O_8$, mp 234–236°, and by the reaction with CH_2N_2 , a methyl ether, $C_{18}H_{16}O_6$, mp 185-186°, which was identified with 7-O-methylpectolinarigenin. UV analysis (Table 1) and NMR spectra were also in complete agreement with structure 3.

MeO OMe (1)
$$R = \beta$$
-Sophorosyl (2) $R = \beta$ -D-Glucosyl (3) $R = H$

The NMR spectrum of per-TMS ether of 1 showed two anomeric proton signals at δ 4.72 (d, J 7 Hz) and $\delta 5.56 (d, J 6 Hz)$. An octaacetate of 1 was obtained as a white amorphous powder, whose NMR spectrum exhibited a phenolic Ac signal at δ 2.44 and seven aliphatic OAc signals at δ 2·1–1·9. These data, coupled with the result of acid hydrolysis, indicate that 1 is a glucosyl glucoside of 3. Partial acid hydrolysis of 1 liberated a disaccharide and glucose (PC and GLC), and the former was identified as sophorose. The location of sophorose in 1 was shown to be at C-6 by the UV analysis: (1) the presence of a free hydroxyl group at C-5 and a substituent at 6-0 was indicated by a bathochromic shift [9] of 19 nm for the band I upon addition of AlCl₃-HCl; (2) the band II maximum in MeOH is at 275 nm (as opposed to 286 nm, typical of a free 6-hydroxy group) [10].

Table 1. UV* and chromatographic† data for flavones of Catalpa ovata

	Spectral maxima + AlCl ₃ -				R_{ϵ}		Color test UV 1
Compound	MeOH	+AlCl ₃	HCl	+ NaOAc	TBA	15% HOAc	UV/NH ₃
(1)	275	300	300	277	0.59	0.71	
	331	347	350	328			dark
(2)	275	297	297	275	0.65	0.35	purple
	328	352	350	328		(i ''
(3)	285	304	303	285	0.81	0.08	no change
	332	360	357	330		,	

^{*} All UV spectra were recorded using standard procedure [15].

^{†2-}D chromatograms were developed on Toyo-Roshi No. 51 paper with TBA (t-BuOH-HOAc-H₂O, 3:1:1) and 15% HOAc.

The sophorosyl linkage in 1 is presumed to be β on the basis of the J value (6 Hz) [11] of the anomeric proton at δ 5.56 in the NMR spectrum and the comparison of the direction of its specific rotation (-30°) with those reported for quercetin-3-O- β -sophoroside (-43.6°) and kaempferol-3-O- β -sophoroside (-46.15°) in 90% EtOH [12]. Upon hydrolysis with excess emulsin for 4 weeks, only the terminal glucose was liberated, a finding consistent with earlier reports that β -sophorosides are very slowly hydrolyzed by emulsin [12.13].

Glycoside 2 showed similar UV spectrum to glycoside 1, but its low R_f value on PC in 15% HOAc, and the NMR spectrum of the TMS ether indicated it to be monoglucoside of 3. The position of the glucosyl linkage in 2 was shown to be at C-6 by the UV analysis (Table 1), and this linkage was shown to be β by the J value (6 Hz) of the anomeric proton signal at δ 5·30 in the NMR spectrum of per-TMS ether and also by the direction of the specific rotation. Glycoside 2 is thus the 6-O- β -D-glucoside of 3.

6-Hydroxylation of the flavonoides has been shown to be a common structural feature in the Bignoniaceae [14]; the isolation of 1 and 2 from the seeds of *Catalpa ovata*, which are the first examples of scutellalein derivatives in this family, would reinforce this view. The glycosides 1 and 2 are also very unusual in that the sugar is linked to the 6-hydroxyl group.

EXPERIMENTAL

NMR spectra were obtained at 90 MHz on TMS ether [15] and chemical shifts are given in ppm relative to TMS as internal standard. GC–MS was carried out on a glass column (0.6 m \times 3 mm i.d.) packed with 1.5% SE-30 on 60–80 mesh Chromosorb W at column temperature 240°. Temperature of ion source 250°, ion accelerating voltage 3.5 kV, ionizing potential 70 eV, trap current 60 μ A. GLC was on columns of 1.5% SE-30 and 3% OV-17 on Chromosorb W, 2 m \times 3 mm, with FID. TLC was carried out on Kieselgel G and PF $_{254}$ developing with EtOAc–Me $_2$ CO–HCOOH–H $_2$ O (5:3:1:1). Silicic acid (100 mesh) and Polyamide C-200 were used for column chromatography. Sugars on PC were developed with n-BuOH–C $_5$ H $_5$ N–H $_2$ O (6:4:3) (A) and (10:3:3) (B), and detected with o-aminobiphenyl hydrogen oxalate.

Isolation of glycosides 1 and 2. The syrup (ca 40 g) of H_2O -soluble fraction was obtained from the seeds (1.5 kg) by the method of Ref. [1]. This syrup (10 g) was diluted with H_2O , treated with baker's yeast and filtered. Filtrate was concentrated and chromatographed on a polyamide (60 g) column, gradiently eluting with $H_2O \rightarrow MeOH$. Evaporation of the H_2O eluant followed by recrystallization from

MeOH-EtOH afforded crystals (118 mg), which showed two spots on TLC. Final purification was performed by prep. TLC followed by repeated recrystallization from MeOH-EtOH to give 1 as yellow crystals, mp 240° (dec), whose homogeneity was exhibited on TLC (R_f 0.4). $[\alpha]_D^{24} - 30^\circ$ (c 0.31, 90% EtOH), $[\alpha]_{D}^{24} - 16^{\circ}$ (c 0.33, MeOH). UV and PC (Table 1). IR (KBr): 3370, 1635, 1593, 1515, 1450, 1356, 1260, 1180, 1070 cm⁻¹. NMR (per-TMS ether, CCl₄): 3.85 and 3.98 (2 OMe), 4.72 (1H, d, J 7 Hz), 5.56 (1H, d, J 6 Hz), 6.37 (1H, s), 6.62 (1H, s), 6.97 (2H, d, J 9 Hz), 7.82 (2H, d, J 9 Hz). The octa-acetate was purified by column chromatography on silicic acid with CHCl₂ and obtained as a white amorphous powder. NMR (CDCl₃): 2·1-1·9 (7 OAc), 2·44 (OAc), 3.87 and 3.97 (2 OMe), 3.8-4.25 (6H, m), 5.16 (8H, m), 6.55 (1H, s), 6.95 (1H, s), 7.04 (2H, d, J 9 Hz), 7.82 (2H, d, J 9 Hz).

Evaporation of the 30% MeOH eluant gave crude 2 (17 mg), which was recrystallized from EtOH repeatedly to afford pure 2 (3·7 mg) as fine yellow needles, mp 217–219° (softening at 150°). $[\mathbb{Z}]_{0}^{24} - 20^{\circ}$ (c 0·15, MeOH), TLC: R_f 0·61. UV and PC (Table 1). IR (KBr): 3400 (broad), 1660, 1604, 1565, 1500, 1450, 1357, 1248, 1180, 1118, 1035, 833 cm⁻¹. NMR (per-TMS ether, CCl₄): 3·85 (2 OMe), 5·30 (1H, d, d) 6 Hz), 6·36 (1H, d), 6·53 (1H, d), 6·696 (2H, d), d) 9 Hz), 7·81 (2H, d), d) 9 Hz) (partial TMS ether [15]): 6·46 (1H, d), 6·40 (1H, d) (C₃—H and C₈—H), 12·86 (C₅—OH).

Hydrolysis of 1. (1) Complete acid hydrolysis. 1 was refluxed with 6% HCl for 2 hr, insoluble yellow ppt. (aglycone) was filtered and recrystallized from MeOH-C₆H₆ to give yellow needles 3, mp 215-216°. Color test: orange (Mg-HCl), yellow (AlCl₃), green [Mg(OAc)₂], UV and PC (Table 1), NMR (per-TMS ether, CCl₄): 3.81, 3.85 (2 OMe), 6.31 (1H, s), 6.53 (1H, s), 6.90 (2H, d, J 9 Hz), 7.73 (2H, d, J 9 Hz), (C_6D_6 [16]): 3.22, 3.28 (4- and 7-OMe). (partial TMS ether, CCl₄ [13]): 6.38 (1H, s), 6.40 (1H, s) (\ddot{C}_3 - and \ddot{C}_8 -H), 12.48 (\ddot{C}_5 -OH). Diacetate, colorless needles from EtOH, mp 234-236°, NMR (CDCl₃): 2·30 and 2·41 (2 OAc). (Found: C, 63·09; H, 4·64. C₂₁H₁₈O₈ requires: C, 63-31; H, 4-55%). Monomethyl ether, pale yellow plates, mp 185-186°. NMR (CDCl₃): 3.87, 3.91, 3.94 (3 OMe), 12.80 (C₅-OH), (Found; C, 66.05; H, 5.11, Calc for C₁₈H₁₆O₆: C, 65.85; H, 4.91%). This methyl ether was identified, by mmp and IR spectra, with 7-O-methylpectolinarigenin prepared by treating pectolinarigenin with CH₂N₂.

The filtrate from the hydrolyzate of 1 was neutralized with Amberlite IRA-410 (OH form), filtered and evaporated in vacuo to give a pale yellow syrup. PC (solvent A and B) and GLC (TMS ether, column temp 170°) showed glucose as the only sugar.

(2) Partial acid hydrolysis. 1 Was refluxed with 1% H₂SO₄ for 20 min, and deposited 3 was filtered. PC of the filtrate showed glucose and a disaccharide (solvent A: R_{Glc} 0·73, B: R_{Glc} 0·48) which, after purification by prep. PC (solvent B), yielded glucose (GLC) by the treatment with emulsin. This disaccharide was identified with synthetic sophorose [17] by co-chromatography (PC and GLC, column temp 220°) in the presence of laminaribiose, cellobiose, maltose, gentiobiose and isomaltose.

Alkaline degradation of 3. A mixture of 3 (50 mg), KOH (1 g) and H₂O (0.5 ml) was heated at 200° for 40 min. The usual work up gave colorless crystals, mp 182–184°, identified as p-methoxybenzoic acid by mmp and IR spectra. (Found: C, 63.47; H, 5.52. Calc for C₈H₈O₃: C, 63.15; H, 5.30%).

Hydrolysis of 2. Hydrolysis was carried out in analogous way as in the partial acid hydrolysis of 1, to give aglycone 3 (PC, TLC, mmp and GC-MS of TMS ether). Chromatographic analysis of the sugar showed only glucose.

Acknowledgement—The authors wish to thank Professor N. Morita of Toyama University for a sample of pectolinarigenin.

REFERENCES

- Kimura, K., Okuda, T. and Takano, T. (1963) Yakugaku Zasshi 83, 635, and references cited therein.
- Inouye, H., Okuda, T. and Hirata, Y. (1965) Tetrahedron Letters 1261; (1967) Chem. Pharm. Bull. (Tokyo) 15, 786.
- 3. Inouye, H., Okuda, T. and Hayashi, T. (1971) Tetrahedron Letters 3615.
- Nakaoki, T. and Morita, N. (1955) Yakugaku Zasshi 75, 171.
- Hiramoto, M. and Watanabe, K. (1939) Yakugaku Zasshi 59, 261.
- Sastri, V. D. N. and Seshadri, T. R. (1946) Proc. Ind. Acad. Sci. A 23, 273.
- Seshadri, T. R. and Sharma, P. (1973) Indian J. Chem. 11, 338.

- 8. Gritsenko, E. N. and Litvinenko, V. I. (1969) Khim. Prir. Soed. 5, 55.
- Mears, J. A. and Mabry, T. J. (1972) Phytochemistry. 11, 411.
- Harborne, J. B. (1967) Comparative Biochemistry of the Flavonoids, Academic Press, London.
- Kamerling, J. P., De Bie, M. J. A. and Vliegenthart, J. F. G. (1972) Tetrahedron 28, 3037.
- Birkofer, L. and Kaiser, Ch. (1962) Z. Naturforsch. 17b, 359.
- Bridel, M. and Lavieille, R. (1931) Bull. Soc. Chim. Biol. 13, 636.
- 14. Harborne, J. B. (1967) Phytochemistry. 6, 1643.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids, Springer, Heidelberg.
- Rodoriguez, E., Carman, N. J. and Mabry, T. J. (1972) Phytochemistry. 11, 409.
- 17. Prepared in the same way as described by Coxon, B. and Fletcher, H. G. Jr. (1961) J. Org. Chem. 26, 2892.

Phytochemistry, 1975, Vol. 14, pp. 1656-1657. Pergamon Press. Printed in England,

PULVERIN, A NEW CHROMONE FROM THE FRUITS OF NEOCHAMAELEA PULVERULENTA*

ANTONIO G. GONZÁLEZ, BRAULIO M. FRAGA and OLIVA PINO

Department of Organic and Biochemistry, University of La Laguna, Instituto de Investigaciones Químicas, C.S.I.C., Tenerife, Spain

(Received 27 January 1975)

Key Word Index—*Neochamaelea pulverulenta*; Cneoraceae; leña santa; chromones; 3.3-dimethylallylspatheliachromene; pulverin; sitosterol; spatheliabischromene.

Plant. Neochamaelea pulverulenta Erndt (Vent) [1] (Cneorum pulverulentum Vent.) A voucher specimen is deposited in the Herbarium of the Botanical Department, University of La Laguna. Source. Guaza Mountain, Tenerife, Canary Islands, in August. Uses Medicinal. Previous work. Aerial parts [2,3].

Present work. Green fruits (300 g) were extracted with hot EtOH, concentrated in vacuo and chromatographed over SiO_2 . Elution with C_6H_6 , C_6H_6 -EtOAc and EtOAc gave: 3,3-dimethylallylspatheliachromene [4,5], the new natural product pulverin (45 mg), sitosterol and spatheliabischromene [4,5].

Pulverin. (2-methyl-6,8-di-*C*-prenyl-5,7-dihydroxychromone) (1), (Found: C, 73·29; H, 7·42; $C_{20}H_{20}O_4$ requires: C, 73·15; H, 7·37%) mp 147-149°, MS: m/e 328 (M⁺), 313, 285, 273, 257, 229, 217 (100%) 205, 177, 128. UV $\lambda_{\text{max}}^{\text{EtOH}}$ 214, 230, 265, 305(sh) nm. IR $\nu_{\text{max}}^{\text{CHCI}_3}$ 3350, 2960, 2900, 2850, 1660, 1600, 1420, 1100, 860 cm⁻¹. NMR (CDCl₃, τ) -2·96 (1H, phenolic proton at C₅), 3·62 (1H,

^{*} Part 6 in the series Chromenes and Chromones. For Part V see González, A. G., Fraga, B. M. and Pino, O. (1975) Rev. Real Acad. Ciencias 69, 347.